Classifying Hedge Fund Strategies with Large Language Models: Systematic vs. Discretionary Performance

Hui-Ching CHUANG¹ Chung-Ming KUAN²

¹National Taipei University ²National Taiwan University

European Financial Management Association 2025 Annual Meeting

2025.06.28

- Classify hedge funds into systematic or discretionary
 - Model-based "systematic" funds vs. human-based "discretionary" funds (Harvey et al., 2017)
 - Similar classifications: "quantitative" vs. "qualitative"("discretionary", "fundamental"), and "machine" vs. "man"(Chincarini,2014; Abis, 2018; Evans et al.,2018)
- Evaluate the performance of classified funds
 - Is fund performance due to authentic skills or sampling luck?
 - Do systematic funds (as a group) outperform discretionary funds?

• A new approach to classifying funds

- Textual analysis is applied to convert text of investment strategies into numeric data and extract "features" from such data.
- Large Language Model is fine-tuning to classify the investment styles.
- Our approach captures strategy similarities and avoids subjective judgement or choice of keywords (cf. Harvey et al., 2017; Abis 2018).
- Evaluating fund performance
 - Implementing a statistical test with a false discovery adjustment under two-pass asset pricing models.
 - 10% to 20% of funds exhibit significant positive alphas
 - Funds classified as Systematic yield higher factor-adjusted returns than their Discretionary counterparts, on average.

Related Researches

- Chincarini (2014)
 - word count: *algorithm*, *automate*, *econometric*, *mathematical*, *model*, *quantitative*, *statistic*
 - quantitative hedge funds have higher alphas than qualitative ones.
- Harvey et al. (2017)
 - word count approach. *algorithm, approx, computer, model, statistical, and system* are keywords used in their paper.
 - performances are similar.
- Abis (2018)
 - collected 2,607 mutual funds' "Principal Investment Strategies" in prospectuses from SEC.
 - classified manually a sub-sample of 200 prospectuses into two types.
 - apply machine learning (ML) methods to 200 (training sample) to classify the reaming funds (prediction sample).
 - compare stock picking/timing and holding performance and justify her empirical findings by a theoretical model.

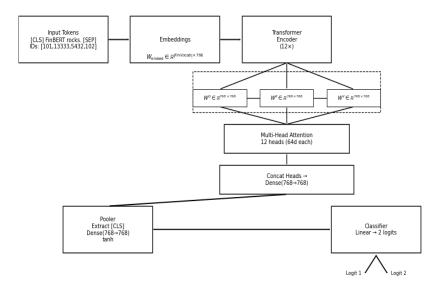
Large Language Model: FinBERT

- BERT (Bidirectional Encoder Representations from Transformers), Devlin et al. (2019) pre-trained contextual information from both the left and right sides of a word on Wikipedia and BookCorpus.
- FinBERT, developed by Yang et al. (2020) and Huang et al. (2023), further trains BERT model on
 - SEC corporate filings (10-K and 10-Q),
 - financial analyst reports from Thomson Investext,
 - earnings call transcripts from SeekingAlpha.

FinBERT captures contextual nuances in financial texts than the original BERT model.

 Domain-specific LLMs: science and biomedicine (Beltagy et al., 2019; Lee et al., 2020), legal studies (Chalkidis et al., 2020), ESG research (Huang et al., 2023; Webersinke et al., 2021), and innovation studies (Lee and Hsiang, 2020; Chuang et al., 2023)

Large Language Model: Fine-Tuning FinBERT



HFR Classification

• As Harvey et al. (2017), we only consider two main strategies (Equity Hedge and Macro) and their six sub-strategies in HFR.

Equity Hedge	Macro		
Equity Market Neutral	Active Trading		
Quantitative Directional	Commodity: Metals		
Fundamental Growth	Commodity: Agriculture		
Fundamental Value	Commodity: Energy		
Sector: Energy/Basic Materials	Commodity: Multi		
Sector: Healthcare	Currency: Discretionary		
Sector: Technology	Currency: Systematic		
Short Bias	Discretionary Thematic		
Multi-Strategy	Systematic Diversified		
	Multi-Strategy		
Testing	Training		

- Macro funds has natural candidate for training sample.
 - Systematic Diversified Macro funds: "investment processes that typically are functions of mathematical, algorithmic, and technical models, with little or no influence from individuals over the portfolio positioning."
 - Discretionary Thematic Macro funds: "primarily reliant on the evaluation of market data, relationships and influences, as interpreted by an individual or group of individuals who make decisions on portfolio positions."
- Training sample: Binary variable $y_i = 1$ if the *i*-th fund is a Systematic Diversified Macro fund and $y_i = 0$ if it is a Discretionary Thematic Macro fund; the feature matrix (explanatory variable matrix) of Macro funds as inputs to train classifiers.
- Our approach is free from subjective judgement of investment strategies/keywords.

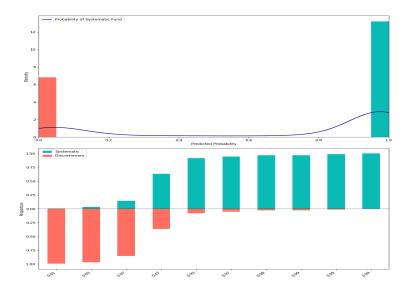
Classification Performance

- In our training (on Macro funds) process:
 - Hold-out test set 15% (337 funds)
 - The remaining 85%, reserved 15% (286) for validation to monitor model performance
 - Leaving 1,619 funds for training

	Accuracy	AUC	Precision	F1	Recall
Training	93.14%	97.55%	92.38%	94.95%	94.18%
Validation	89.16%	93.47%	89.90%	91.99%	
Test	92.58%	96.16%	91.91%	94.53%	

 In our previous studies, we shown that the best performed ML algorithm (Random Forest among LDA, KNN, SVM, Classification Tree, and Gradient Boosting) achieved 86%, 82%, 86%, and 90% for accuracy, AUC, precision, and F1 score in the testing set respectively.

Classification: In sample performance



Equity Hedge: Discretionary

Figure 1: Equity Hedge: Discretionary

Equity Hedge: Systematic

Figure 2: Equity Hedge: Systematic

Consider the following factor model:

$$E(r_i) = \alpha_i + \beta'_i \lambda, \quad i = 1, \cdots, N,$$

where r_i : excess return of fund *i*. α_i pricing error (alpha) of fund. β_i is a vector of risk exposures, and λ is the risk premia. We want to examine:

$$H_{0,i}: \alpha_i \leq 0, \quad i=1,\cdots, N.$$

Rejecting the null hypothesis $H_{0,i}$ implies that the superior performance (positive alpha) of fund *i* is statistically significant and cannot merely be attributed to chance.

• We consider the following factor models

- One factor: MKT
- Three factors: MKT, SMB, HML
- Five factors: PTFSBD, PTFSFX, PTFSCOM, PTFSIR, and PTFSSTK (returns from the long position of the lookback straddle of bonds, currencies, commodities, short-term interest rates, and stocks.)
- Seven factors: MKT, SMB, CS (credit spread), $\Delta 10 Y,$ PTFSBD, PTFSFX, and PTFSCOM
- Eleven factors: add HML, MOM, PTFSIR, and PTFSSTK to 7 factors

Main Strategy	Style	Count	Mean	STD	Median	Mean Diff.	
Seven-factor model (F7)							
Equity Hedge	Discretionary Systematic	2,728 1,177	8.24% 15.52%	77.80% 68.54%	15.29% 15.82%	7.28%	
Macro	Discretionary Systematic	338 791	10.20% 37.19%	67.83% 69.46%	7.52% 33.57%	26.99%	
Eleven-factor model (F11)							
Equity Hedge	Discretionary Systematic	2,728 1,177	11.35% 16.37%	84.83% 76.27%	17.10% 17.40%	5.02%	
Macro	Discretionary Systematic	338 791	13.86% 39.79%	77.85% 80.08%	15.59% 39.39%	25.92%	

- Giglio et al. (2021)'s test proceeds as follows:
 - First, they use observable risk factors to calculate risk exposures and residuals for each fund through time-series regression
 - Second, they employ matrix completion on the unbalanced residual matrix, Hastie et al. (2015), and use PCA to identify latent risk factors and exposures.
 - Third, they perform a cross-sectional regression of the mean excess return on the concatenated observed false and unobserved exposures to estimate risk premiums and fund alphas.
 - Finally, they apply the (adjusted) Benjamini-Hochberg False-discovery rate test to fund alphas to account for the data-snooping bias.
- We used the test from Giglio et al. (2021) to identify funds with positive alpha in each category without data-snooping bias and control for the false discovery rate at 5% level.

Strategy Level	Style	F7	F11	F3+U4	F5+U2	U7	
Panel A: All strategies							
	Discretionary	22.02%	19.57%	22.64%	23.39%	22.11%	
	Systematic	18.70%	17.28%	21.39%	20.93%	19.21%	
Panel B: Main strategies							
Equity Hedge	Discretionary	22.84%	20.16%	23.17%	24.05%	22.69%	
	Systematic	24.55%	22.94%	24.38%	25.66%	23.53%	
Macro	Discretionary	15.38%	14.79%	18.34%	18.05%	17.46%	
	Systematic	9.99%	8.85%	16.94%	13.91%	12.77%	

- This paper fine-tuned the FinBERT, a large language model (LLM) to mitigates the subjective judgment traditionally involved in categorizing investment strategies.
- Our classification performance exceeds most ML based approaches.
- We find that, on average, funds classified as Systematic yield higher factor-adjusted returns than their Discretionary counterparts.
- About 10% and 20% of funds exhibit statistically significant positive alphas in models combining observable and unobservable factors.

- Beltagy, I., Lo, K., Cohan, A., 2019. Scibert: A pretrained language model for scientific text. arXiv preprint arXiv:1903.10676 .
- Chalkidis, I., Fergadiotis, M., Malakasiotis, P., Aletras, N., Androutsopoulos, I., 2020. LEGAL-BERT: The muppets straight out of law school. arXiv preprint arXiv:2010.02559.
- Chuang, H.C., Hsu, P.H., Lee, Y.N., Walsh, J.P., 2023. What share of patents is commercialized? Technical Report. Working Paper. Manuscript.
- Devlin, J., Chang, M.W., Lee, K., Toutanova, K., 2019. Bert: Pre-training of deep bidirectional transformers for language understanding, in: Proceedings of the 2019 conference of the North American chapter of the association for computational linguistics: human language technologies, volume 1 (long and short papers), pp. 4171-4186.
- Giglio, S., Liao, Y., Xiu, D., 2021. Thousands of alpha tests. The Review of Financial Studies 34, 3456-3496.
- Huang, A.H., Wang, H., Yang, Y., 2023. Finbert: A large language model for extracting information from financial text. Contemporary Accounting Research 40, 806–841.
- Lee, J., Yoon, W., Kim, S., Kim, D., Kim, S., So, C.H., Kang, J., 2020. Biobert: a pre-trained biomedical language representation model for biomedical text mining. Bioinformatics 36, 1234–1240.
- Lee, J.S., Hsiang, J., 2020. Patent classification by fine-tuning bert language model. World Patent Information 61, 101965.
- Webersinke, N., Kraus, M., Bingler, J.A., Leippold, M., 2021. Climatebert: A pretrained language model for climate-related text. arXiv preprint arXiv:2110.12010.
- Yang, Y., Uy, M.C.S., Huang, A., 2020. Finbert: A pretrained language model for financial communications. arXiv preprint arXiv:2006.08097.